Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The set Q consists of the following terms:
f1(nil)
f1(.2(nil, x0))
f1(.2(.2(x0, x1), x2))
g1(nil)
g1(.2(x0, nil))
g1(.2(x0, .2(x1, x2)))
Q DP problem:
The TRS P consists of the following rules:
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
G1(.2(x, nil)) -> G1(x)
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The set Q consists of the following terms:
f1(nil)
f1(.2(nil, x0))
f1(.2(.2(x0, x1), x2))
g1(nil)
g1(.2(x0, nil))
g1(.2(x0, .2(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
G1(.2(x, nil)) -> G1(x)
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The set Q consists of the following terms:
f1(nil)
f1(.2(nil, x0))
f1(.2(.2(x0, x1), x2))
g1(nil)
g1(.2(x0, nil))
g1(.2(x0, .2(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
G1(.2(x, .2(y, z))) -> G1(.2(.2(x, y), z))
G1(.2(x, nil)) -> G1(x)
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The set Q consists of the following terms:
f1(nil)
f1(.2(nil, x0))
f1(.2(.2(x0, x1), x2))
g1(nil)
g1(.2(x0, nil))
g1(.2(x0, .2(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The set Q consists of the following terms:
f1(nil)
f1(.2(nil, x0))
f1(.2(.2(x0, x1), x2))
g1(nil)
g1(.2(x0, nil))
g1(.2(x0, .2(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F1(.2(nil, y)) -> F1(y)
F1(.2(.2(x, y), z)) -> F1(.2(x, .2(y, z)))
Used argument filtering: F1(x1) = x1
.2(x1, x2) = .2(x1, x2)
nil = nil
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f1(nil) -> nil
f1(.2(nil, y)) -> .2(nil, f1(y))
f1(.2(.2(x, y), z)) -> f1(.2(x, .2(y, z)))
g1(nil) -> nil
g1(.2(x, nil)) -> .2(g1(x), nil)
g1(.2(x, .2(y, z))) -> g1(.2(.2(x, y), z))
The set Q consists of the following terms:
f1(nil)
f1(.2(nil, x0))
f1(.2(.2(x0, x1), x2))
g1(nil)
g1(.2(x0, nil))
g1(.2(x0, .2(x1, x2)))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.